- 阅读权限
- 30
- 精华
- 最后登录
- 1970-1-1
- 在线时间
- 小时
- 主题
- 好友
- 相册
- 分享
- 日志
- 记录
- UID
- 633588
- 帖子
- 0
该用户从未签到
|
本文作者:娄大江% }# _$ `- ^6 @/ F( L, L" j. i0 ~0 M
不知你是否曾沉浸于斐波那契螺旋线的迷幻?不知你是否曾迷失于彭罗斯三角的神秘?不知你是否曾陶醉于正多边形的优雅?
0 r' x5 ?* ^8 H& Q/ u当这一切与《纪念碑谷 2》结合起来的时候,你会惊叹,原来一款富有数学元素的游戏也能让人如此喜爱。7 Q8 O% x/ b* H O' h0 W$ ]7 ?/ z
我从未见过一款富有数学元素的游戏,能够这么美
5 l. g0 U- Y4 j3 x$ n《纪念碑谷 2》的设计风格简洁干净,没有冗余的装饰,每一个关卡都可以截图做成一张壁纸。其沿袭了一代中的视错觉、不可能几何等经典设计,而其添加的新元素——“树”的设计更是点睛之笔,令玩家难以忘怀。
3 K$ R' t% m9 I4 o那么除此之外,《纪念碑谷2》的画面里还隐藏着哪些玄机,让人对这个小世界欲罢不能呢? I( o" C1 F, W
不可能图形,谜题从此而来《纪念碑谷》中的很多谜题设计都来源于不可能图形,这种视觉欺骗往往让人感到不可思议。最基础的,也是出现很多次的便是彭罗斯三角形。
. }3 |0 X$ d9 W. ^彭罗斯三角形被称为“最纯粹形式的不可能”,它将三个不同角度的三角顶角整合为一个整体,因而本应是一个平面的面发生了扭转,而这样的三角形在三维世界是不可能存在的。
$ a' ?/ r/ K9 e9 ?
我从未见过一款富有数学元素的游戏,能够这么美
彭罗斯三角形,图片来源:GAOXIAOGIF.COM
- F! x7 A' y2 q+ g5 `
我从未见过一款富有数学元素的游戏,能够这么美
纪念碑谷中的彭罗斯三角形
! X/ P& [) t7 ~/ H3 r5 s% H除了类似彭罗斯三角形的视觉错觉之外,还有一部分是利用“凹”与“凸”的错觉。因为“凹”与“凸”的相对明暗关系相同,因此人要依靠环境来判断究竟是凹还是凸。
3 X% |% y/ \+ _1 i6 a q
我从未见过一款富有数学元素的游戏,能够这么美
几个顶角是凹还是凸?( |% Z9 k6 R2 C U
当然,说到不可能图形就一定要提到埃舍尔。
$ H9 ^" S9 B( F4 F: V$ {
我从未见过一款富有数学元素的游戏,能够这么美
7 o2 X+ U% I: W0 N" w; A- l早在二十世纪五十年代,荷兰画家埃舍尔就已经有了多幅表现视觉悖论的画作。他画得极其写实,因此造成的荒谬感就异常强烈。
0 T& X# G h6 k6 S7 Z& V' f在《纪念碑谷 2》中,萝尔的女儿独自乘船来到新大陆时,便遇到了这样一个谜题。$ n; f+ T- f; ^
离开这个地方的门高高地挂在高塔上面,而破碎的路却不知通向何处,眼看着没有能帮助她升去高层的道具,殊不知沿着平面往前走,便已然到达了高层。; z4 x: z2 h* {4 H& Y* v
我从未见过一款富有数学元素的游戏,能够这么美
& I( D( k8 G4 _+ ~* C+ V k
这副不可能的场景,在埃舍尔的作品《瀑布》中早有所体现。
, H: B" j _# Q: D! s5 k' W
我从未见过一款富有数学元素的游戏,能够这么美
埃舍尔《瀑布》(Waterfall, 1961),图片来自:http://www.mcescher.com/
8 q: ?4 _, V' c+ C0 u+ s1 N: A+ _这些悖论产生的原理都是相同的,即将三维物体投影到二维后产生的空间维度错觉。值得一提的是彭罗斯三角形在三维世界不可能存在,但在四维世界很容易就可以做到。正如莫比乌斯环、克莱因瓶。莫比乌斯环在二维世界不可能存在,需要在三维中扭曲;而克莱因瓶需要在四维扭曲,真正的克莱因瓶不存在交叉。/ F1 B4 |4 _5 ?9 T8 ~& x# y
等角投影,迅速建立空间印象 《纪念碑谷2》的谜题多是建立在立体空间的,而有的游戏的建筑其实十分复杂,如何保证让玩家尽可能快地接受信息,从而建立起空间印象呢?这里就用到了一个制图学经常用到的方法——等角投影。 5 {7 M2 p8 X( a; w8 }* g' m
简单来说,等角投影是一种在二维空间中呈现三维物体的一种方法,这种方法的特点是保证角度正确,但是会产生形变。$ E6 v0 v5 C7 y5 s3 I
我从未见过一款富有数学元素的游戏,能够这么美
彼得·艾森曼设计的Frank House等角投影图 ]' ]3 C1 O( T* W$ E6 }
最常见的应属墨卡托投影,这是制作地图普遍使用的投影方法。地球是一个球体,设想一个与地轴方向一致的与地球相切的圆柱,按照等角投影的方式把经纬线投到圆柱上。这样做的后果是越往两极,形变越大,拽得越开,但是点与点之间的长度比例都是正确的,即没有角度变形,但有严重的面积变形。把这个圆柱剪开,就形成了一张世界地图。也是因为严重的面积变形,本来很小的格陵兰岛因为靠近北极,地图上就变成了一个很大的岛。" o W3 ~8 W! N) e
我从未见过一款富有数学元素的游戏,能够这么美
墨卡托投影制作的世界地图,巨大的南极北极
& _1 P: h7 P5 ?当然了,《纪念碑谷2》运用的并不是墨卡托投影,而是建筑设计中更普遍的一种,将立体的建筑整个做了等角投影投射到画面上。正如上面所说的,这样做越靠近两端的地方就越会失真,仔细比对的话,《纪念碑谷2》的很多画面是不符合标准透视的,和地图一样,两头被拉大了。- H$ \: r/ k( l# r/ V
《纪念碑谷2》透视VS真实透视,注意顶面底面,透视导致对边一定不平行1 c9 r/ U v) F, _) r! X/ g; i( w
这样的投影一定程度上克制了“近大远小”,使得本应是梯形的投影变成了长方形,于是就有了这样的魔幻效果:$ Q5 d9 C; Q0 h( H* S+ p
我从未见过一款富有数学元素的游戏,能够这么美
/ V" F6 W$ a' T0 A
但是这种有限的失真换取的是更加精确的表面与内部的视觉。因此玩家可以迅速建立空间影像帮助了解这个世界。3 L! {- d8 N! r! c n+ o/ b
旋转对称与轴对称,手残也能画好符 《纪念碑谷2》的不同于一代的另一个巧妙设计是关卡之后通关的图形可以自己画。很多人甚至会为了画好这个图形重新打好几遍那个关卡。然而并不是所有人都是大触,《纪念碑谷2》怎样有信心把这样一个任务交给可能手残的玩家呢?这里就用到了大家都知道的旋转对称与轴对称。
/ P' S3 Y7 G' N9 W# F1 J
我从未见过一款富有数学元素的游戏,能够这么美
: C4 n1 t" p- x2 n' _哪怕单独的一个很丑很丑,线条仿佛触电抽搐,图形诡异,在对称成一圈之后就会变得和谐。就如同小的时候剪窗花,把红纸叠成好多叠,然后乱剪一通,打开看也依然赏心悦目。7 D' C b& t: ^% k; b& D
旋转之所以能拥有这样的魔力,是因为它把你的瑕疵多次按照规律重复,这样瑕疵本身拥有了规律,成为了一种秩序所在。并且它与图案的剩下部分拥有同步的规律,也就可以融合进图形,即使你手残也可以放心大胆地画。& J' p6 N6 l4 X' K
别看程序自动帮你轴对称很容易,现实生活中要想画出对称的事物其实很困难。不说复杂的花,单是正多边形的尺规作图,就要让数学学者们琢磨好一阵子。7 k4 C' b1 i( t4 J, h8 o. z
尺规作图,是指用没有刻线的直尺与圆规作图。在所有有关正多边形尺规作图的故事当中,天才数学家高斯发明正十七边形作图方法是最有名的了。
/ H3 q4 G5 W, [5 b
我从未见过一款富有数学元素的游戏,能够这么美
正十七边形尺规作图方法- }5 G4 {, x( O/ l
当然,这只是个传说,这个方法并不是高斯发现的,但是高斯确实在尺规作图领域有很大贡献,他证明了有哪些多边形可以被尺规作图——当且仅当边数是费马素数或者两个不同的费马素数的乘积,或者是这些数的2的乘幂倍时。
0 L* |* d: w/ M. g% h) i+ ]根据高斯的理论,正65537边形(内角和为11796300°,对角线2147450879条,没错我不是在搓键盘)可以被尺规作图。德国数学家Johann Gustav Hermes花费了10年给出了具体的作法并于1894年发表。这是人类给出的最多条边的多边形作图方法。
/ `9 r N" [- G) Q; D4 l1 l
我从未见过一款富有数学元素的游戏,能够这么美
坐标轴中间已经看不见的小点点就是正65537边形# z- ]: q* f; b4 b
如何成就点睛之笔? 《纪念碑谷2》最亮眼的亮点当属树的设计。在游戏中,树在光的照耀下就回成长,离开光会缩回,担当了动态机关的同时,带来的美感令人惊艳,这种美除了树与光本身之外,还来源于对比和跳脱。
! z, s& t. ~% H5 ?. ]《纪念碑谷2》的背景环境与一代一样多为几何形建筑,色彩都是“冰淇淋色”。即饱和度适中,不含高光,不贴材质,一切都以纯色呈现。另外建筑多为规则图形,且参考了建筑的解构主义与极简主义,线条规则清晰,几何美突出。
' c3 Y& i5 f; V- G
我从未见过一款富有数学元素的游戏,能够这么美
西班牙红墙,图片来自:Ricardo Bofill
8 G. d! Q z* S+ P6 Q5 [+ k% `而这棵树就不一样了,饱和度通常偏高的颜色,形状没有完全抽象成纯色立方体,而是略微写实地有了一些材质和不规则图形(树叶、树干)。且因为关卡设计,树在游戏中是即时变化的,这都和直来直去的背景形成了对比。9 I9 {; Z3 [. d/ F3 y
我从未见过一款富有数学元素的游戏,能够这么美
色彩对比,图片来自:http://www.tuicool.com/
' ^' L+ ]0 l! o5 f
我从未见过一款富有数学元素的游戏,能够这么美
即时变化的树7 A, h/ f9 t& c. d- D" E0 M
这样的对比让树成为了整个画面的点睛之笔,在视觉上有一个跳脱的点,让这个场景显得生机勃勃。3 ^, a# Z- h, O: l2 J) N
除了颜值担当之外,树还有一个独特的象征,它象征着女儿的成长与蜕变。走到果园的尽头,女儿走进树屋,树木随即生长,等到再次见到光明重新绽放之时,长大成人的女儿站在树的顶端,重新打量这个世界。在这个成长的故事里,处处阳光普照。
" y$ V O) Y/ h# Q- N5 K
我从未见过一款富有数学元素的游戏,能够这么美
- Y1 \+ `1 C9 E& O, W- M) g8 t巧妙地运用数学让画面更加协调,达到应有的视觉效果,无形中给这个游戏加分不少。如果你在寻找一个没有负担轻松温馨,但同时充满惊喜、挑战常识的冒险,那么《纪念碑谷2》将是一个完美的选择。
: L& |4 }& y2 t4 k# U# N ]如果你已经玩过这款游戏了,那么我想你一定已经感受到《纪念碑谷 2》中数学元素所带给你的迷幻、神秘和优雅了。
2 Q7 i! r2 ~2 V" u! u5 p2 R如果你还没有玩过,那么我想你正需要这款游戏,来带你摆脱对数学的偏见,感受到数学之美。南通0 |
|